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SUMMARY

An investigation of the effects of variation of leading-edge sweep
and surface inclination on the flow over blunt flat plates was conductzd
at Mach numbers of &4 and 5.7 at free-stream Reynolds numbers per inch of
6,600 and 20,000, respectively. Surface pressures were measured on a
flat plate blunted by a semicylindrical leading edge over a range of
sweep angles from 0° to 60° and a range of surface inclinations from
-10° to +10°.

The surface pressures were predicted within an average error of
+8 percent by a combination of blast-wave and boundary-layer theory
extended herein to include effects of sweep and surface inclination. This
combination applied equally well to similar data of other investigations.

The local Reynolds number per inch was found to be lower than the
free-stream Reynolds number per inch. The reduction in local Reynolds
number was mitigated by increasing the sweep of the leading edge.

Boundary-layer thickness and shock-wave shape were changed little
by the sweep of the leading edge.

INTRODUCTION

A major portion of the trajectory of hypersonic winged vehicles may
be in the upper reaches of the atmosphere where flow occurs at low unit
Reynolds numbers. Thus, appreciable boundary-layer growth may occur over
wings and control surfaces of a hypersonic vehicle. The leading edges of
these surfaces may be or become sufficiently blunt to produce detached
bow shock waves. Both the boundary-layer growth and bow-shock-wave
strength affect local pressures in the flow field over these surfaces.

In addition, these two effects may be altered by angle of attack and by
sweep of the leading edge of the airfoil.



Theoretical analysis of these real flows is difficult because these
two effects, boundary-layer growth and bow-shock-wave detachment, occur
simultaneously. However, these effects have been treated separately,
and the important parameters have been pointed out. The theoretical
analysis by Lees and Probstein (ref. 1) and Lees (ref. 2) of the case of
an i1deally sharp plate in viscous hypersonic flow indicated there is a
parameter, MSA’ReX, which predicts the magnitude of the pressure rise
brought about by boundary-layer growth in the absence of detached bow
shock waves. In order to assess the effect of the blunt leading edge on
the inviscid flow field, Lees and Kubota (ref. 3) and Cheng and Pallone
(ref. 4) utilized the blast-wave theory of Taylor (ref. 5) and Sekurai
(ref. 6). Their analogy to this problem pointed out that the blast wave
parameter was useful in prediction of surface pressure where boundary-
layer growth might be unimportant. In the case of real flows, elther
wind tunnel or flight, the effects of both the boundary-layer growth and
the bow shock wave are present and must be considered together. A method
for calculation of the high surface pressures obtained in these real
flows over unswept and noninclined flat plates was outlined in reference 7.
This method consists of a linear combination of the parameters pointed
out by the viscous and inviscid theories mentioned above.

Strengthening of the bow shock wave due to leading-edge blunting was
found in reference 7 to alter the local total pressures at the boundary-
layer edge for some test conditions. This effect of blunting was also
measured in experiments reported in references 8 and 9. Quantitative
values of local total pressure are necessary to the calculation of local
Mach number or local Reynolds number along the boundary-layer edge.

The general purpose of the research described in this paper was to
study the effect of leading-edge sweep and angle of attack on the hyper-
gsonic flow field over blunt flat plates. In particular, it was hoped that
the experimental. data would verify an extension presented herein of the
methods of reference 7 to include variation of angle of leading-edge sweep
and angle of attack.

Experimental pressure-distribution data were obtained from blunt flat

plates at angle of sweep and angle of attack in a rarefied gas stream.
The results are compared with the results of other similar investigations.

SYMBOLS

A empirical constant,-%%: (see eq. (1).)
Y

b 7[9:%22 %? + 0.166(7—1)] (see eqg. (1).)



N2/ 3
empirical constant, <é> (See eq. (1).)

factor cy(CD)g/s (See eq. (1).)
constant, 0.112 for y = l.4; 0.169 for y = 1.67 (See eg. (1).)

leading-edge pressure drag coefficient based on projected
frontal area

constant of proportionality in the linear viscosity and tempera-

ion - ¢, (=
ture relation o = Cy (;w

diameter or thickness
pressure drag force on the semicylindrical leading edge

Moog

blast-wave pressure parameter, Z;753§7§

constant in equation (3)

Mach number

pressure

height of point on shock wave, see sketches (a) and (b)
Reynolds number

coordinate in free-stream direction, see sketch (c)
temperature

velocity

coordinate length normal to leading edge, defined in sketch (c)
angle of attack, deg

ratio of specific heats

bow-shock-wave detachment distance

boundary-layer thickness



Q angle of sweep, deg
w exponent of viscosity-temperature relation defined by u ~ T
K viscosity
P density
3
X interaction parameter, MyCu

/Rex

Subscripts
s chdracteristic length for quantity along s coordinate
direction
W quantity based on body wall or surface conditions
X characteristic length for quantity along x coordinate
direction
a quantity based on inviscid wedge condition far back on body
o) quantity based on conditions at the boundary-layer edge
Yo total quantity based on undisturbed free-stream conditions
t2 total quantity behind normal shock wave
ty local total guantity at the boundary-layer edge
0o quantity based on undisturbed free-stream conditions
ANALYSIS

Basic Method for Unswept Plates at Zero Angle of Attack

The results of reference 7 have indicated that a method based upon
a combination of two simple theoretical flow models is adequate to
evaluate some of the phenomena occurring over noninclined, unswept, flat
plates. These two models are shown in sketch (a).
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SHARP PLATE I[N VISCOUS FLOW BLUNT PLATE IN INVISCID FLOW

Sketch (a)

The left part of sketch (a) represents an ideally sharp plate in hyper-
sonic viscous flow., The viscous effects near the surface of the sharp
plate cause a growth of the boundary layer along the plate. The boundary-
layer growth on this plate induces a rise in the static pressures at the
plate surface. This theoretical flow model has been considered in detail
by Lees and Probstein (ref. 1) and Lees (ref. 2). They have shown theo-
retically that the pressure increase due to the viscous effect is pro-

portional to M3/ [Repx.

The right part of sketch (a) represents a blunt plate placed in
inviscid hypersonic gas flow. The blunt leading edge introduces energy
into the flow in the same manner as a moving explosion. This inviscid
effect of the blunt leading edge causes a pressure rise at the plate
surface. A detached bow shock wave forms ahead of the leading edge.

This wave may remain highly curved far out into the flow field. These
effects have been treated by Lees and Kubota (ref. 3) and Cheng and
Pallone (ref. 4) in analogy to the theory of the blast wave (refs. 5

and 6). They showed the surface pressure rise produced by the blunt
leading edge to be proportional to Cp2/3M,"/(x/d)2/3 for two-dimensional
flat plates.

In order to describe phenomena occurring over blunt plates in hyper-
sonic viscous flow of real fluids, a combination of the two results
obtained from the above-mentioned theoretical flow models was used in
reference 7. The results obtained using this method indicate that the
surface pressure, boundary-layer thickness, and shock-wave shape for
unswept noninclined plates can be calculated, to good accuracy, in terms
of free-stream properties. In addition, reference 7 shows that the



viscous and inviscid contributions to surface pressures can be linearly
combined, and that the boundary-layer thickness prescribed by the viscous
theory for sharp plates is not appreciably affected by blunting of the
leading edge.

The surface pressures were found to be well predicted by the follow-
ing linear combination of pressure terms obtained from the two theoretical
flow models:

p/p, = 1 + Abg%, + Bel (1)
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The constant cy is given in reference 4 as 0.112 for air and 0.169 for
helium, and Cy is the proportionality constant in the linear viscosity
relation p/uy = Cy(T/Ty) .

The boundary-layer thickness was predicted by the results of viscous
theory for the infinitely sharp plate as

% = [l 13 v + 0.332(y-1) + 4. 27} N&,&f__J[" (2)
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The shape of the shock wave produced by the blunt leading edge was
found to be predicted by the results of the blast-wave analogy as

2/3
B - lon)™ (%) (3)

In reference 7 the value of K was found to be 1.45. The detached
bow shock wave results in a reduction in the local total pressure along
the boundary-layer edge. This effect has been found to persist as far
back on bodies as measurements have been made.

With these results for unswept noninclined plates in mind, the effects
of inclining the flat plates to the oncoming stream and of sweeping the
leading edge will be considered next. The terms of the equations for
surface pressure, shock-wave shape, boundary-layer thickness, and local
total pressure will then be investigated for factors dependent on sweep
and inclination. The variation of leading-edge sweep will be assumed to
affect the blast-wave pressure increment, the shock-wave shape, and the
local total pressure. The variation of surface inclination will be
assumed to affect the viscous pressure increment and the boundary-layer
thickness. The method and the assumptions involved will be assessed by
use of the available experimental information.

Method for Angle of Attack

The two basic theoretical flow models used to describe the effects
of surface inclination on the flow field are shown below in sketch (b).

Shock wave

Bow shock
wave

Boundary loyer

—T— * L. —
Mo MCD
Expansion fan
INCLINED SHARP PLATE IN INCLINED BLUNT PLATE IN
VISCOUS FLOW INVISCID FLOW

Sketch (b)



The analysis of the hypersonic viscous flow over sharp flat plates
(ref. 1) is applicable to inclined plates (shown on the left side of
sketch (b)), provided the flow is considered to develop in the sharp-
wedge inviscid flow field as determined either from oblique shock-wave
or Prandtl-Meyer relations. Thus, the variables in the hypersonic inter-
action parameter, X, will be calculated from these sharp-nose inviscid
flow properties that are assumed to exist far downstream on the inclined
plate. The viscous contribution to the pressure on inclined surfaces can
now be written for this more general case in the same form as before
(see eq. (1)) except that the reference conditions are inviscid sharp
wedge or "o conditions:"

AboXq = Ay [O_'§6_5 v, 0.166(7_1)] M (&)
MP To Regx

The inviscid flow over an inclined blunt plate is also shown in
sketch (b). If the inviscid flow field is dominated by the blunt leading
edge, the blast-wave analogy to the inviscid flow may be considered, to
a first approximation, to depend only on leading-edge drag. Since small
variation in angle of attack will not change the flow field about the
leading edge appreciably, surface inclination will be assumed to have no
effect on the drag of the leading edge; thus the shock wave will remain
unaltered. Consequently, the inviscid pressure term, BcI, of equation (1)
will not be changed by small variation in angle of attack.

If one assumes again that the viscous and inviscid contributions to
the surface pressure are independent and can be linearly added, the
surface pressures can then be calculated approximately by

_P..=l+Aba-ia+?2.]§c—Mmf_ (5)

Pq, AT
a

The various blast-wave theories give the pressure behind the shock wave
in ratio to the undisturbed pressure. Therefore, the ratio (pw/pa) is
introduced with the blast-wave pressure term in order to obtain the
proper limiting condition of inviscid sharp-wedge pressure.

The boundary layer that develops along the inclined surface aft of
a sharp leading edge, as in sketch (b), can be calculated from viscous
compressible flow theory (ref. 1). The flow, however, is considered to
develop in the inviscid sharp-wedge flow field, as previously stated.
The boundary-layer thickness may be expressed for sharp inclined plates
by:



2= ['1—7'2' ZH 0.332(7-1) + 4'2;@ Ma® o Cyr X (6)
d MoZ Ty My \/ﬁgd a

In equation (6), the subscript o indicates that the quantity involved
is calculated from inviscid sharp-wedge conditions.

Method for ILeading-Edge Sweep

The two theoretical models of flow past the sharp and blunt bodies
(sketch (a)) are again utilized to describe the effects of leading-edge
sweep on the hypersonic viscous flow over noninclined blunt plates. The
flow will be viewed in a plane which is normal to the plate surface and
which contains the free-stream direction line s, sketch (¢). For a sharp
leading-edge plate the boundary-
layer growth in the prescribed
plane, should proceed approximately
as given by equation (2) regardless —
of leading-edge sweep. Therefore, Mo
the pressure rise caused by the
boundary-layer growth will be
assumed to be unaffected by sweep.

Sketch (c)

The blunt plate with a swept leading edge in inviscid flow is con-
sidered next. If the assumption is retained that the leading edge
dominates the inviscid flow field over the blunt flow model, it is only
necessary to evaluate the variation of the leading-edge drag with leading-
edge sweep. It is shown in reference 10 that if a detached shock exists
at the leading edge, and the independence hypothesis of sweepback theory
holds true, the variation of the leading-edge drag, measured in the free-
stream direction, with sweep can be expressed in coefficient form as:

Cpg = Cp cos3Q (1)

It is the leading-edge drag, Dg, acting in the free-stream direction that
represents the energy fed into the transverse flow field over the blunt
plate with swept leading edge. The blast wave or inviscid pressure term
may then be obtained for swept plates from equations (1) and (7):

2/3 szcosgﬂ (8)

BeI = BeyCp
4 (s/a)2"3
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The resulting pressure increments contributed by the two theoretical flow
models are now added in a linear combination as before. Thus, for a
blunt plate with leading-edge sweep, the surface pressures are given by:

200520
(s/a)2/®

(9)

= 1 + AbX, + Bc

g |o

The equation of the shock-wave shape for a swept blunt plate may be
obtained by combining equations (3) and (7) as

R 2/3
3= KCD1/3(%> cos 0 (10)

Method for a Combination of Sweep and Angle of Attack

As before, if the viscous and blast-wave effects are assumed to Dbe
independent, the surface pressures can be calculated for the general
case of an inclined plate with a swept blunt leading edge by the following
egquation:

1

2
P v D,

1 + Ab X, + == Bc __Mm__7_ cos2Q 11)
P, @ T (s/d)2/° (

o8
where

Aba?a

I

MgZ Ta ,ReguS

Likewise the boundary-layer thickness for the blunt inclined plate is
assumed not to be altered by sweep of the blunt leading edge. Therefore,
the boundary-layer thickness may be calculated by:

3
A7[0'8S5 v, 0.166(y-1) M‘L—-—m

2= [;ELZQ v 4 0.332(y-1) + ”'EEJ MaZNCw 5 (12)
d M® T W2 Rega N 4

The shock-wave shape is glven approximately by equation (10) where R
is measured to a zero angle of attack center line as noted in sketch (v).
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Local Total Pressure Variation With Sweep

The presence of a detached bow shock wave has been shown (refs. '
8, and 9) to affect the local total pressure along the edge of the
boundary layer on blunt flat plates. The local total pressure was found
in some cases for unswept plates (ref. 7) to be reduced to that value of
total pressure existing behind the bow shock wave and to remain reduced
over the test length. Because of this reduction in local total pressure,
values of local Reynolds numbers, Rey, will be lower than free-stream
Reynolds number, Re . Therefore, to assess the possible variation of

local total pressure with sweep of the leading edge, the following
considerations are presented. The detached bow shock wave occuring

ahead of and parallel to the blunt swept leading edge of the plate is now
considered as a shock wave oblique to the free-stream flow. The ratio of
total pressures across this wave can be ortained from shock-wave theory.
The total pressure calculated behind this oblique wave is assumed to be
equal to the local total pressure along the boundary-layer edge. Thus,
for air:

Pty ( 6M, cos®0 7/2</ 6 5/2 (13)
Py \M,2cos2Q + 5 ™ 2cos2Q - 1 3
where

Mcos Q > 1

It is conceivable that some distance back from the leading edge, the
effect of the strong bow shock wave may diminish and the local total
pressure may approach the free-stream value. However, measurement of
this type of variation of local total pressure with distance back from
the leading edge has not been reported in the literature. Therefore, the
assumption is made here that py does not vary with distance from the
nose. It is also assumed that tge strength of the bow shock wave is not
appreciably altered by small variation in angle of attack; therefore,
inclination effects will not be considered here.

Calculation of ILocal Reynolds Numbers

Heat-transfer and skin-friction correlations have been successful
when based on the local Reynolds numbers calculated from properties at
the boundary-layer edge. (Accurate prediction of transition may also be
dependent on knowledge of true local conditions of flow.) Therefore, the

effect of blunting and boundary-layer growth on these local Reynolds
numbers will be assessed and a method of calculation outlined.



The ratio of the local (unit)Reynolds number to the free-stream
(unit) Reynolds number may be calculated from the definitions of these
guantities as:

Rex _ M p Mo [T (14)

The blunt leading edge and the boundary-layer growth affect local prop-
erties on which the ratios of equation (14) are dependent through the
static-pressure rise and the total-pressure reduction. In reference 7
the isentropic relations were utilized locally at the boundary-layer edge
to obtain the major dependence of the ratios of equation (14) on the
total and static pressure. Thus, the Reynolds number ratio becomes:

=A@

_ (1)( 222
¢ = ()%

where

With the inviscid wedge values as the reference flow field, the Reynolds
number ratio of equation (15) for plates at angle of attack becomes:

Res <g%:>§<;g;f * -(r/m) (16)
Reas Pt/ \Pa/ [ 1-(Tu/Ts)
One effect of blunting is the possible reduction in local total pressure.
This effect tends to reduce the local Reynolds number (see eq. (15) or
(16)). In addition, the blunting causes a surface pressure rise which,
by equation (16), may be seen to increase the local Reynolds number.
These effects tend to oppose each other, and the effect which predominates
depends on specific conditions. Blunting also alters the local tempera-
tures on which the exponent ¢ depends. The growth of the boundary
layer produces a rise in pressure which, when considered alone in equa-

tion (15) or (1L4), increases the Reynolds number. The range of validity
of equation (16) is a subject for experimental investigation.
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TEST EQUIPMENT

Wind Tunnel and Nozzle

The tests were performed in the 8-inch low-density wind tunnel which
has been described briefly in reference 7 and is shown schematically in
figure 1. The variation of Mach number is accomplished by change of
nozzles. The nozzles were designed as described in reference 7, wherein
the nozzle operation at Mach number 4 was discussed. The Mach number 6
nozzle was calibrated at a stream static pressure of approximately 250
microns Hg absolute. The calibration of the stream was made by means of
an impact pressure probe. With the assumption that the stream was isen-
tropic the Mach numbers were calculated from the impact pressure readings
by two methods. One method involves total pressure upstream of the nozzle;
the other method involves the static pressures as measured 2 inches
upstream of the nozzle exit plane. The agreement of the two methods may
be noted in figure 2(a), wherein the results of an axial survey are shown,
In figure 2(b), the results of a radial survey at a stream test station
3.5 inches from the nozzle exit plane are shown. The pertinent information
concerning the air stream is tabulated in table I.

Models and Test Method

Four slab pressure models were fabricated from flat brass stock to
a final thickness of 1/4 inch. The semicylindrical leading edges were
swept to 0°, 30°, 45°, and 60°. The models were 4 inches wide which was
sufficient to span the stream. The orifice chord. line length was
7-1/2 inches for the swept models. Pressure orifices of 0.030-inch
diameter were installed in the manner shown in figure 3(a). The angle
of inclination of the surface to the stream was varied mechanically.

The pressure orifices were connected to a multiple-tube manometer.
The working fluid of the manometer was a low-vapor-pressure vacuum-
diffusion-pump oil. The manometer was mounted within the test chamber
in order to shorten pressure lines. The reference leg was vented to the
free-stream static pressure. The oil height differences were measured
by means of a cathetometer (magnifying telescope) outside the test
chamber,

An open-end type impact pressure probe was used for the flow field
surveys. The probe was constructed of stainless-steel tubing flattened
to an oval shape of 0.006 inch in height and 0.020 inch in width. The
impact pressures sensed by this probe were indicated by an oil manometer.
This probe was mounted to a traversing mechanism for motion along and
across the jet. In addition, the probe could be rotated about an axis
passing through the probe tip normal to the plate surface.
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All impact surveys were obtained with the probe alined in the free-
stream direction. Thus, in order to assess the possible errors in
boundary-layer measurements due to local stream-angle variations with
sweep, the probe was rotated through a range of angles of +20° when
placed at the edge of the boundary layer measured over the 30° swept model.
The measured pressures showed that the probe was relatively insensitive
to rotation of about 10° to 15°. The results indicated that the local
stream velocity angles were within the flat portion of the probe curve
and, therefore, accurate definition of stream direction was neither
necessary nor possible. A simple analysis presented in appendix A
indicates that the local stream angle would probably maximize at a value
of 6.50 for conditions where the leading edge is swept to about 45°,
Therefore, all data were obtained with the probe alined in the free-stream
direction.

Near the leading edge of the plates the boundary layer was disturbed
by the presence of the probe for these tests. Surveys were performed
during the present tests in which the ratio of boundary-layer thickness
to probe thickness was varied from 3.5 to 10 by increasing probe size.
The probe size was found not to affect the measured thickness of boundary
layer for the range of ratios mentioned above. The data for s/d of
1 to 1.5 were obtained for a probe to boundary-layer thickness ratio of
about 2, and thus may be in error because of probe size effects. The
remaining bulk of the data was obtained for values of this ratio greater
than 3 and is thus not affected by probe size.

The pressure models were placed in the air stream so that the line
of pressure orifices was coincident with the stream span center line.
The leading-edge stagnation point of the orifice chord line was placed
on the axis of the stream at a distance of 3.5 inches from the Mach
number 6 nozzle exit plane for all conditions of sweep and inclination.
The impact pressure probe was moved, during a survey, normal to the plate
surface. BSuch surveys were obtained at various locations along the
pressure orifice line.

The pressure model (fig. 3(b)) tested in the Mach number L stream
was blunted by a semicylinder of l/2-inch diameter. This model was
described in reference 7. Surface pressures were measured at various
angles of attack; however, no flow-field surveys were obtained over this
model.

The thin leading-edge models were constructed by attaching a
0.002-inch-thick strip of gage stock to the upper surface of the unswept
model and of the 60° sweep model. The thin leading edge was extended
to about 1/4 inch ahead of the blunt nose of the test body, see fig-
ure 3(c).
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Spanwise pressure measurements were obtained at 0° and 10° angle
of attack by moving the model orifice chord line off the stream span
center line. These measurements were made in order to assess Jet boundary
effects.

The range of tests conducted in this investigation is summarized
in table IT.

RESULTS AND DISCUSSION

In the analysis section it was assumed that the various contributions
were independent and could be added linearly to obtain a simple method
of calculating surface pressures on flat plates. The available experi-
mental surface static-pressure data extending over a wide range of
variables will be utilized in the assessment of this method. Experimental
results of shock-wave shape and boundary-layer thickness measurements
are also presented in substantiation of the assumptions involved in the
independence and superposition of the viscous and inviscid flow field.
These experimental results were obtained from impact pressure surveys
of the flow field over the flat plates for various conditions of the
leading-edge sweep, angle of attack and leading-edge bluntness.

Surface Pressures

The surface pressures were measured over a range of angles of attack,
angles of leading-edge sweep, Mach numbers, and Reynolds numbers. The
effects of sweep and angle of attack will be shown separately, and then
in correlated form. In figure 4, the measured surface pressures in ratio
to free-stream pressure are presented as a function of distance measured
in the s direction (see sketch (c)) from the leading edge for several
angles of sweep. It may be noted that the pressures are high near the
leading edge and decrease with distance from the leading edge. Also,
from figure 4, it may be noted that the surface pressures decrease as the
sweep of the leading edge is increased.

The surface pressures measured on inclined plates whose leading edges
were unswept are shown in figure 5 for Mach number 4 and figure 6 for Mach
number 5.7. The pressures are noted to decrease with increase in distance
from the leading edge. The ratio of surface pressure to inviscid wedge
pressure may be seen from figure 5 to decrease as the angle of attack of
the plate surface is varied from -10° (expansion) to +10° (compression).
The actual surface static pressure for expansion angles of attack are
lower than for compression angles of attack of the test surface.



16

It may be noted from figures 4 and 6 that the pressure at s/d
greater than about 15 are lower than inviscid wedge values. This type
of variation may be caused by trailing-edge effects and side boundary
effects. Data obtained at two span locations on the unswept model are
presented in figure 7 for 0° and 10° angle of attack., A small systematic
change is noted in figure 7 for the two span locations. These data seem
to indicate that a small side boundary effect is present.

The surface static pressures measured for the present test conditions
are compared in figure 8 to the values calculated using equation (11).
The empirical constants in equation (11) were taken to be A = 14/Cy and
B = (1/2)2/3. In addition, some data obtained by Bogdonoff and Vas
(refs. 11 and 12) at M, of 13.3 in helium, by Erickson (ref. 13) at
M, of 16 and 17.3 in helium and by Feller (ref. 14) at M, of 6.9 in
air are also presented in figure 8. The solid line represents one-to-one
correspondence of theory and experiment. It is pointed out that the data
are correlated over a range of Mach numbers from L to 17.3, leading-edge
Reynolds numbers from 600 to 270,000, angles of attack +10° to -10°, angles
of sweep from 0° to 60°, and for air and helium. The assumption that the
viscous and inviscid flow fields do not interact to a first approximation
wvas made in the analysis. This assumption was also utilized in reference
14 wherein similar correlating factors were obtained. The success of this
correlation evidenced by figure 8 indicates that this "independence"
assumption is sufficiently good to allow calculation of the surface pres-
sures by the proposed method (eq. (11)) with an average error of #8 percent
over a wide range of conditions.

Flow Field Surveys

Local flow properties.- A typical impact pressure survey through the
flow field above a blunt plate is presented in figure 9. It may be noted
that the measured impact pressure increases with distance above the plate,
reaches a peak value at the shock wave, and then decreases rapidly to the
free-stream impact pressure. Similar survey results have been reported in
references 7, 8, 9, 15, and 16. As in reference 7, the boundary-layer
edge was defined here as the point where the impact pressure curve has
approached within 1 percent of the linear portion as noted in figure 9.
The Mach number distributions for this flow field survey were calculated
on the assumption that the static-pressure gradient normal to the surface
through the boundary layer was negligible. The velocity distribution was
calculated on the additional assumption that total temperature was constant.
From figure 10, one can observe that the local Mach number and velocity at
the boundary-layer edge are lower than the undisturbed free-stream values.
This effect of leading-edge blunting will be discussed in a later section.
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Shock=-wave shape.- The shape of the shock wave generated by the
leading edge has been assumed in the analysis section to depend only on
conditions at the leading edge. In order to assess this assumption,
shock-wave shapes were obtained from surveys of the flow over a blunt
plate at a Mach number of 5.7 and leading-edge Reynolds number of 4860
for various angles of sweep and angles of attack. The shock-wave heights
are plotted in figure 11 as a function of dimensionless distance from the
leading edge. As expected, these data exhibit differences due to angle
of sweep. The results of the analysis indicate that the effect of sweep
introduces a factor of cos Q in equation (10). However, the present
data for various sweep angles are noted in figure 11 to have little
dependence on sweep. Oue possible fit of the data can be made by use
of the factor cosl/3Q in equation (10) rather than cos Q. These data
are presented in correlated form in figure 12 utilizing the cosl/3Q
factor. However, there 1s no apparent theoretical reason for the use of
this factor. In figure 13, the above-mentioned factor of cosl/3Q was
used to compare the shock-wave-shape data of the present tests with data
obtained for blunt inclined plates and blunt swept plates at a Mach number
of 13.3 in helium (refs. 11 and 17), for blunt plates at a Mach number of
4 in air (ref. 7), and for sharp plates at a Mach number of 5.7 in air
(ref. 16). The dimensionless distances plotted on the abscissa of fig-
ure 13 may be noted to include the bow wave detachment distances as
obtained from reference 18. These detachment distances have an appreci-
able effect at small values of s/d. In contrast, this refinement is
negligible for s/d values above 20.

The effects of angle of surface inclination are noted to be negligible
for shock heights, R, (measured to the 0° inclination center line) for
both the present test data and the data for M, = 13.3. Also shown in
figure 13 are two solid lines representing a parabolic and a linear vari-
ation of the shock-wave shape with distance. The data near the leading
edge are noted to be fit well by the sguare root (or parabolic) variation.
Far from the leading edge the shock wave approaches a linear variation
with distance from the leading edge. The blast wave prediction of a
2/3-power variation is shown to fit these data from an (s/d + A/d) of
2 to 50 by the following equation:

R N

s
R 12,2 1
d cosl’/3q 3<; i d) (17)

Boundary-layer thickness.- Boundary-layer thicknesses obtained as
described above, and noted in figure 9, are presented in figure 14 plotted
as a function of distance from the leading edge. Also presented in
figure 14 are two solid curves obtained from the equation (12) using
inviscid sharp-wedge conditions. The data obtained for 10° compression
inclination of the test surface may be noted to fit the theoretical curve
quite well. The data obtained for 0° inclination of the surface and 0°
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to 60° of leading-edge sweep are noted to evidence some scatter. However,
reasonable fit to the predicted curve is noted for s/d greater than
about 4. In figure 15 the data are plotted in a correlation form obtained
from equation (12), as:

5 NRead _[s
i (8)

By

where

_{1.73 Tw _ k.27 o
Bl = (:TJG‘E &; + 0.332(')’ l) + _M(leIIvb'Z CW

Also presented in figure 15 are data obtained by Kendall (ref. 16) for a
very sharp leading-edge plate at a Mach number of 5.8 for zero angle of
sweep and the data obtained for sharp plates from the present tests. The
solid line plotted in figure 15 is the square-root variation with distance
from the leading edge prescribed by equation (18). The data are noted to
be correlated quite well by this infinitely sharp leading-edge equation
over a range of leading-edge Reynolds numbers from 12 to 6600. Note here
also that variation of the sweep of the blunt leading edge from o° to

60° has no appreciable effect on the boundary-layer thickness. This
correlation indicates that the boundary-layer thickness is independent of
leading-edge bluntness and leading-edge sweep. This result substantiates
the assumption made in the Analysis section that the viscous contribution
to the surface pressure may be calculated independently of bluntness or
sweep.

In general, the flow field surveys discussed here indicate that for
blunt plates in hypersonic flow the leading-edge dominates the inviscid
flow field and that the boundary-layer growth proceeds unaffected by either
the leading-edge bluntness or sweep. These results tend to substantiate
the assumption that the viscous and inviscid flows do not interact insofar
as the parameters necessary to surface static-pressure calculation are
concerned.

Local Reynolds Number

The Reynolds number parameter calculated for local conditions depends
on values of the local flow properties such as total pressure, Mach number,
and temperature along the boundary-layer edge, as may be noted in equa-
tion (16). The boundary-layer edge or flow-field surveys described above
were utilized to obtain these local properties. The effect of the variation
of these local properties on the local Reynolds number will be described.
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The local total pressures along the boundary-layer edge may be calcu-
lated from the measured local impact pressures and local surface static
pressures. The assumptions involved are that the static-pressure gradient
through the boundary layer is negligible and a detached bow shock exists
in front of the impact pressure probe. The results of this calculation
for the present tests are presented in figure 16, wherein the ratio of
calculated local total pressure to free-stream total pressure is plotted
as a function of sweep angle. Data are also presented for conditions
where the surface inclination is different from zero. The solid line in
figure 16 is the variation predicted by means of oblique shock-wave theory
(eq. (13)). The agreement of the data with the solid line indicates that
variation of local total pressure with sweep may be predicted with fair
accuracy. The variation in the measured total pressure with distance from
the leading edge was small as may be noted from figure 16. Therefore,
these tests are not indicative of the maximum downstream extent of the
effect of the high entropy layer of gas caused by the detached bow shock
wave.,

The local Mach number at the boundary-layer edge was calculated by
means of the measured surface pressure and measured impact pressure. The
results for typical test conditions are shown in figure 17, wherein the
ratio of local to free-stream Mach number is plotted versus distance from
the leading edge. The local Mach numbers are lower than the free-stream
value. The increase of the local Mach number with distance from the lead-
ing edge is due to the decrease in static pressure with distance. The
values are also noted in figure 17 to increase, and approach the free-
stream value of Mach number, as sweep of the leading edge is increased.
This increase in local Mach number with sweep reflects the variation in
the surface static pressure and total pressure at the boundary-layer edge
caused by sweep of the leading edge.

As previously stated, when certain local flow quantities are known,
the local Reynolds number can be calculated by means of equation (14).
This calculation was made for the present test conditions for which these
properties were measured. The effect of variation of free-stream Mach
number and sweep on local Reynolds numbers are shown separately in fig-
ures 18 and 19, respectively. In figure 18, the ratio of local to free-
stream Reynolds number is plotted versus dimensionless distance from the
leading edge for zero sweep of the plate leading edge. The data shown
were obtained at Mach number of 5.7 for the present tests and at a Mach
number of 3.95 from reference 7. This ratio of Reynolds numbers does not
depend on the Reynolds number of the leading edge for that range of
conditions where the reduction of the total pressure is known, as was
pointed out in reference 7. It can be seen from figure 18 that the vari-
ation in local Reynolds number with free-stream Mach number is predicted
by equation (15) wherein w = 1 and { = 0.57 for the temperature range of
the tests. The predominant factor causing the difference in level of
these curves is the total-pressure ratio across the detached bow shock
wave.
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The effect of leading-edge sweep on local Reynolds numbers is shown
parametrically in figure 19, wherein the Reynolds number ratio is plotted
versus s/d. The local Reynolds number is noted to approach free-stream
value (inviscid sharp flat plate value) as the sweep of the leading edge
is increased. Again, for these test conditions, it is noted from equa-
tion (15) and figure 19, that the dominating factor in this variation of
level is the local total pressure. The upper dashed line plotted in
figure 19 was calculated for zero leading-edge sweep using the known
surface pressures and a local total pressure assumed equal to the free-
stream value. The solid curves were calculated from eguation (15) with
local total pressures obtained from equation (13) and with measured values
of surface pressure. Comparison of the dashed curve with the data for the
case of zero leading-edge sweep (circular symbols) points out that the
assumption of no reduction in total pressure might well lead to quite
erroneous results for the local Reynolds number. In fact, an error of
nearly 800 percent could be encountered for these conditions. The surface
pressures and the local total pressures must both be known before an
accurate calculation of local Reynolds number can be made.

CONCLUSIONS

Experimental studies were made of the effect of leading-edge sweep
and angle of attack on the hypersonic flow field over blunt flat plates.
In particular, pressures were measured over blunt flat plates at nominal
Mach numbers of 4.0 and 5.7 at free-stream Reynolds numbers of 6,600 and
20,000 per inch.

These surface pressures were predicted to engineering accuracy by a
method developed herein utilizing a combination of viscous and inviscid
hypersonic parameters. Furthermore, this method was found to predict
surface pressure results obtained in other similar investigations. In
fact, the applicability to wind-tunnel tests was found to encompass a
range of Mach numbers from 4 to 17.3, free-stream Reynolds numbers per
inch from 6,600 to 1,000,000, leading-edge thicknesses from 0.0006 to
0.5 inch, leading-edge sweep from 0° to 600, surface inclination from
10° expansion to 10° compression, and for both helium and air as the test
gases.

The boundary-layer thickness was found to be essentially unaltered
by the sweep or bluntness of the leading edge. Results of compressible
boundary-layer theory for ideally sharp flat plates were used to predict
the boundary-layer growth over blunt plates for Mach numbers from 4 to
5.7 and free-stream Reynolds numbers per inch of 6,600 to 20,000.
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The shock-wave shape was changed little by the sweep of the leading
edge and by angle of attack. The theoretical variation predicted by an
extension of the blast-wave analogy was not in agreement with experiment.

For conditions of leading-edge sweep, total pressures measured along
the boundary-layer edge were in agreement with total pressures calculated
behind a normal shock wave occurring at the component or crossflow Mach
number. For the conditions of the tests described, including angle of
attack, the boundary layer had not emerged from the high entropy layer
produced by the blunt leading edge.

The local Reynolds numbers were reduced by blunting of the leading
edge. This reduction was mitigated by sweeping the leading edge.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., Sept. 25, 1958
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APPENDIX A
LOCAL STREAM ANGLE

A crude estimate of the local stream direction at the edge of the
boundary layer on a plate aft of a swept blunt leading edge can be made
on the basis of the results of reference 7. The free-stream velocity is
separated into components parallel and normal to the leading-edge bow
shock wave (sketch (d)) where Qp 1is the angular change of the stream
direction.

L eading-edge The results of reference 7

shock wove indicate that the normal component
of velocity when considered alone
is reduced by the strong shock wave,
and upon re-expansion of the flow
to free-stream pressure will reach

a value such that 0.8 < %?Q < 1.
= Uy —
The lower bound gives rise to the
largest stream deflection, thus a
value of 0.8 is assumed so that

Sketch (4d)

u2n = 0.8 uln (Al)

By trigonometry and sketch (d)

ten 6 = =L ;  tan 0 = P (A2)
Uzn Uin
thus,
tan Q
tan 6 = =5 (A3)
and
Qp = 6-Q (AL)

The value of Qp will be indicative of the direction of wup, the stream
velocity, in comparison to free-stream velocity direction. A few values
calculated using equations (A3) and (AL) are given below.



Q, Op,
deg deg
0 0
15 3.5
30 5.8
L5 6.4
60 5
90 0

The calculated values of deflection of the stream outside the boundary
layer are noted to be small.
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TABLE I.- STREAM CONDITIONS

Design Test Static pressure Usable diameter
Mach No. Mach No. Microns of Hg Reo/1nch of izream,
L 3.95 300 6,600 3.6

6 5.7 250 20,000 2
TABIE II.- SUMMARY OF TEST CONDITIONS
d)
Type of test M, Rewd | in. (o Q
5.7 | 4860 | 0.25 0 0
30
Surface pressure and 45
flow-field surveys 60
10 0
5.7 | 4860 .25 2 0
L
Surface pressures g
10 30
y -10 30
Surface pressure and | 2.7 Lo 0021 O 0
flow-field surveys ’ i 60
3.951 3300 5 ~-10 0
-6
Surface pressures 0
6
/ . 10
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Figure 2.~ Comparison of free-stream Mach number calculated by two methods
from surveys of the Mach number 6 jet.
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Figure 9.- Variation of impact pressure with height above a blunted plate.
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